
The Automatic Production of Space
Author(s): Nigel Thrift and Shaun French
Source: Transactions of the Institute of British Geographers, New Series, Vol. 27, No. 3 (2002),
pp. 309-335
Published by: Wiley on behalf of The Royal Geographical Society (with the Institute of British Geographers)
Stable URL: http://www.jstor.org/stable/3804486 .

Accessed: 09/06/2013 02:21

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Wiley and The Royal Geographical Society (with the Institute of British Geographers) are collaborating with
JSTOR to digitize, preserve and extend access to Transactions of the Institute of British Geographers.

http://www.jstor.org

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=black
http://www.jstor.org/action/showPublisher?publisherCode=rgs
http://www.jstor.org/stable/3804486?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space

Nigel Thrift* and Shaun Frencht

This paper is concerned with the changing nature of space. More and more of the
spaces of everyday life come loaded up with software, lines of code that are
installing a new kind of automatically reproduced background and whose nature is
only now starting to become clear. This paper is an attempt to map out this
background. The paper begins by considering the nature of software. Subsequently,
a simple audit is undertaken of where software is chiefly to be found in the spaces
of everyday life. The next part of the paper notes the way in which more and more
of this software is written to mimic corporeal intelligence, so as to produce a better
and more unobtrusive fit with habitation. The paper then sets out three different
geographies of software and the way in which they are implicated in the
reproduction of everyday life before concluding with a consideration of the degree
to which we might consider the rise of software as an epochal event or something
much more modest.

key words software code timespace everyday life automatic

*School of Geographical Sciences, University of Bristol, Bristol BS8 lSS
email: N.J.Thrift@bristol.ac.uk

tSchool of Geography, University of Nottingham, Nottingham NG7 2RD
email: Shaun.French@nottingham.ac.uk

revised manuscript received 6 February 2002

[The] co-implication of discourse and referent is more
than metaphorical because the linguistic system is not
separate from the world, but as technology, as an
articulation of life, is a natural extension of it. (Johnson
1993, 199)

One thing is for sure. In the domain of the text,
imagination is king. But a king subject to laws, laws of
the story. (Appelbaum 1995, ix)

Introduction

This paper is an attempt to document the
major change that is taking place in the way that
Euro-American Societies are run as they increas-
ingly become interwoven with computer 'soft-
ware'.' Though this change has been pointed to in
many writings, it has only rarely been systemati-
cally worked through. This, then, is the first goal of
this paper - to systematically register this change
and its extent. We hope to show how, in only

50 years or so, the technical substrate of Euro-
American societies has changed decisively as soft-
ware has come to intervene in nearly all aspects of
everyday life and has begun to sink into its taken-
for-granted background. But simply registering
this change is not enough. Our second goal is to
explain why it has been so effective. And here we
point to software's ability to act as a means of
providing a new and complex form of automated
spatiality, complex ethologies of software and other
entities which, too often in the past, have been
studied as if human agency is clearly the directive
force. In other words, what we believe we are
increasingly seeing is the automatic production of
space, which has important consequences for what
we regard as the world's phenomenality, new land-
scapes of code that are now beginning to make
their own emergent ways.

But it has to be said that the description
'software' is not an easy one to work with because,
in the literature, all kinds of different meanings of

Trans Inst Br Geogr NS 27 309-335 2002
ISSN 0020-2754 (? Royal Geographical Society (with The Institute of British Geographers) 2002

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

310 Nigel Thrift and Shaun French

'software' are routinely conflated, with the result
that different kinds of efficacy are muddled up.
Thus, at the most general level, software is often
considered to be part of a more general structure of
writing, a vast Derridean intertext that has gradu-
ally become a system without edges and that
includes all manner of 'coded' writings rooted in a
base cybernetic metaphor (Johnson 1993; Hayles
1999; Kay 2000). In such a conception, software is
both a measure of how writing is now done, and a
new kind of cultural memory based upon dis-
courses of information as pure digital technique
(Hobart and Schiffman 1998). In a second guise,
software can be considered as another step in the
history of writing as a supplement to spoken lan-
guage: here we have Derrida's critique of phono-
centrism and logocentricsm made flesh (Derrida
1998; Aarseth 1997).

An ever-increasing number of people are spending
more hours per day using written - that is, keyboard -
language rather than spoken language. Within a few
years, computers will be enriching nearly every house-
hold of the developed world. Human life in these
countries is centering on, and contracting to, electronic
text and international networking, and moving away
from speech. Soon written language might be more
prominent worldwide than spoken language. A differ-
ent sort of language is emerging from this artificial
interfacing: an 'oral-written language' occupying a
special position between spoken and written language.
Computers now regularly communicate with one
another, too, through writing - that is, through written
programming languages - without human mediation.
Writing has, in this way transcended humanity itself.
We have redefined the very meaning of writing itself.
(Fischer 2001, 316)

Within this general shift, software can be
thought of as a set of new textualities: program-
ming languages, e-mail and other forms of 'net-
speak' (Crystal 2000), and software packages, each
with their own textual protocols and paratexts,
which have produced their own linguistic turn.
Then, in a third guise, software can be thought of
as the product of the actual writing of code, as the
outcome of the 'practised hands' (McCullough
1998) of a comparative handful of people who are
able to mobilize skills that even now are difficult
to describe to produce effective forms of code
(Lohr 2001). Such skilful interaction between
humans and machines has been the object of
numerous studies in the human-computer inter-
action (HCI) and computer-supported cooperative

work (CSCW) literatures, which all show that there
is no straightforwardly observable exchange
between discrete purified entities called 'human'
and 'machine', but rather a series of conversations
which demonstrate that software is not a simple
intermediary, but rather a Latourian 'mediary'
with its own powers (see, for example, Thomas
1995). Then software has one more guise. It can be
couched as the guts of a set of commodities:
websites, software packages, games, animated
movies, and so on, which are dispensed via the
medium of the screen and have become part of a
more general cultural ambience. The ubiquity of
the screen (see McCarthy 2001) guarantees soft-
ware's cultural hold, letting it assume a central
economic and cultural place.

Whatever the guise, software clearly stands for a
new set of effectivities. But, of course, such a
statement begs a whole series of important
questions. For example, how does software relate
to hardware? Is it, as in Kittler's (1997) extreme
reaction, the case that there is no software,
only hardware? Or is it that the hardware is now
secondary? And, as another example, given that
software has a hold on the world, what is the exact
unit of efficacy? A line of code? An algorithm or a
program? A complete 'informational ecology'
(Nardi and O'Day 1999)? And, as one more
example, is software's address now somewhere
between the artificial and a new kind of natural,
the dead and a new kind of living, or the material
and a new kind of material semiotics? These are
not questions we can hope to answer fully in such
a short paper but, hopefully, we can start to open
them out, for what is certain is that software is
displacing some of our fondest conclusions about
our contemporary age and cultural idiom as it
provides us with 'new and different means of
informing' (Hobart and Schiffman 1998, 268). We
will attempt this opening out through a paper that
is structured in five parts. In the first part, we will
consider the nature of software. Our argument here
is that software consists of a series of 'writing acts'
which have changed our expectation of what can
show up in the everyday world. This definitional
section having given software a kind of voice, we
can then move on to consider through a simple
audit - no more, no less - how that voice is
increasingly heard in everyday life as software
achieves presence as 'local intelligence'.

Then, third, we will consider the ways in which
all this software has been transmuting and, in

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic vroduction of svace 311

particular, how it is beginning to recognize and
play to apparently human characteristics like
emotion and is therefore starting to take on some of
the characteristics of corporeal intelligences (just as
corporeal intelligences are beginning to take on
some of the characteristics of software; Collins and
Kusch 1998). In the penultimate section, we will
attempt to touch on the 'absent presence' of soft-
ware in everyday life, by outlining three different
geographies of software: (1) how and where soft-
ware is produced; (2) the rise of new informational
standards of conduct; (3) new forms of creativity
and play. In the conclusion, we will try to sum up
and extend our narrative by considering software
as a new form of gathering, what we might call
'semi-artificial life' (Borgmann 2000).

The machinations of writing

In this section, we want to begin our account of
software by briefly considering its nature. In doing
so, we have to face up to the fact that software is
often considered to be a 'technology', and is then
able to be negatively assimilated into the domain
of thought as a figure or metaphor representing
some social else, thus allowing it to be captured
within a linguistic or semiotically contrived field,
rather than disclosed as an agent of 'material
complexification' (Hansen 2000). But software
cannot be reduced to this kind of textualism, even
though it can be regarded as a text. That would be
to domesticate its generative alterity, to simplify
what can be regarded as intent, and to draw a veil
over a politics of the shifting boundaries defining
'objects' which is so crucial to the contemporary
'human' sciences (Oyama 2001).

For a long time, much of the human world has
been on automatic, has expanded beyond the
immediate influence of bodies and has made its
way into machines. The expansion of humanity
beyond bodies has taken place in two ways, as a
result of the invention of writing and then print,
and as a result of the invention of various
machines; line-by-line instructions and rude
mechanicals. 'Software' and 'hardware'. In the
past, these two means of manipulating the world
have often been held separate. But now what we
are seeing is an age in which writing is able to take
on many new mechanical aspects - what we are
seeing coming into being, therefore, is an age of
software, but software becoming so pervasive and

complex that it is beginning to take on many of the
features of an organism.2 But this is an organism
with a passion for inscription, which goes to show
that 'the logocentric repression of writing is to an
extent only now visible and understandable in
the light of recent developments in contemporary
science' (Johnson 1993, 191).

We believe that this gradual evolution of soft-
ware into what Clark (2000) calls 'wideware' is
extraordinarily important for understanding the
current direction of Euro-American cultures, and
especially the nature of Western cities. Increasingly,
spaces like cities - where most software is gathered
and has its effects - are being run by mechanical
writing, are being beckoned into existence by code.
Yet, remarkably, this development has gone almost
unrecorded. Why so? There are four immediate
reasons, we think.

First, software takes up little in the way of visible
physical space. It generally occupies micro-spaces.
Second, software is deferred. It expresses the
co-presence of different times, the time of its pro-
duction and its subsequent dictation of future
moments. So the practical politics of the decisions
about production are built into the software and
rarely recur at a later date. Third, software, is
therefore a space that is constantly in-between, a
mass-produced series of instructions that lie in the
interstices of everyday life, pocket dictators that
are constantly expressing themselves. Fourth, we
are schooled in ignoring software, just as we are
schooled in ignoring standards and classifications
(Bowker and Star 1999). Software very rapidly
takes on the status of background and therefore is
rarely considered anew.

It would be easy at this point to fall back on
some familiar notions to describe software's grip
on spaces like cities. One would be hegemony. But
that notion suggests a purposeful project, whilst
software consists of numerous projects cycling
through and continually being rewritten in code.
Another notion would be haunting. But again the
notion is not quite the right one. Ghosts are
ethereal presences, phantoms that are only half-
there, which usually obtain their effects by stirring
up emotions - of fear, angst, regret, and the like.
Software is more like a kind of traffic between
beings, wherein one sees, so to speak, the effects of
the relationship. What transpires becomes reified
in actions, body stances, general anticipations
(Strathern 1999). We would argue, then, that soft-
ware is best thought of as a kind of absorption, an

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

312 Nigel Thrift and Shaun French

expectation of what will turn up in the everyday
world. Software is a new kind of phenomenality
which can 'touch the ontic' (Spivak 1993, 30).
Software is, in other words, a part of a 'technologi-
cal unconscious' (Clough 2000), a means of sustain-
ing presence which we cannot access but which
clearly has effects, a technical substrate of uncon-
scious meaning and activity. 'It is, after all, against
the natural unity of self-heard voice that Derrida
places technicity, the machine, the text, writing - all
as bearers of unconscious thought' (Clough 2000,
17). Increasingly, therefore, as software gains this
unconscious presence, spaces like cities will bear
its mark, bugged by new kinds of pleasures, obses-
sions, anxieties and phobias which exist in an
insistent elsewhere (Vidler 2000; Thrift 2001).
Software quite literally conditions our existence,
very often 'outside of the phenomenal field of
subjectivity' (Hansen 2000, 17).

Thus we come to a more general reason why
software remains so little considered. We still
cleave to the idea of spaces like the city as popu-
lated by humans and objects that represent each
other via words and images, which makes it very
difficult to mark this new territory (cf. Downey and
McGuigan 1999). Software does not fit this repre-
sentational model, the 'theatre of proof' (Phelan
1993), for its text is about words doing things,
about determinate presentations in particular con-
texts 'below the "threshold" of representation
itself' (Hansen 2000, 4). Because software 'affects
our experience first and foremost through its infra-
structural role, its import occurs prior to and inde-
pendently of our production of representations'
(Hansen 2000, 4). Seen in this way, software is
perhaps better thought of as a series of 'writing
acts' (rather than speech acts) of a Bakhtinian or
Derridean kind, which have a 'heuretic', rather than
an analytical dimension (Ulmer 1989), based upon
the inventive rather than the analytic, in which
language is both message and medium. Thus

Within the previous instauration, founded on the
alphabet, the only way to access theory per se was
through metaphor, every concrete manifestation of the
idea being equivalent to its deformation. Metaphors
were necessary because the intellect was otherwise
incapable of grasping the idea of true illumination.
With the new instauration, the artefacts of theory are no
longer metaphors. Instead, the object is no longer the
deformation of the idea, but is its real embodiment.
Now the idea, or thought, rests within, or out of, the
object itself. (Lechte 1999, 141)

It then becomes something of a moot point
whether this means that software - as a non-
representational form of action - 'does not rely on
the activity of thinking for its ontogenesis' (Hansen
2000, 19) or whether it is simply another kind of
distributed thinking in which yet more human
functions are delegated into 'the automatic,
autonomous and auto-mobile processes of the
machine' (Johnson 1999, 122), as part of a process
of externalization and extension of the vital
based, for example, on the apprehension of the
human body as simply 'too slow' (Stiegler 1998).
Whichever the case, what we can see is that what
counts as 'life' itself comes into question as new
material syntheses emerge and embed themselves
(Doyle 1997).

In the rest of this paper we will therefore chiefly
call on two theoretical technologies to understand
software. One is a whole series of theoretical
elements that are now merging which, when taken
together, constitute a 'theatre of promise' in their
emphasis on the how of practice, their attention to
hybrid human-object networks (cyborgs, actants,
ethologies, and the like) and their devotion to the
task of repopulating the spaces of modernity with
these new inhuman figures. The other is the
emphasis on the performativity of writing.
Drawing on work as diverse as Derrida and per-
formance studies, this other 'theatre of promise'
constitutes a series of plays with scriptural space
and time, which are intended to extend the nature
of writing whilst retaining its 'prophetic touch'
(Johnson 1993 1999).

Mapping software

To begin our audit of software's locations, let us try
to understand just how much things have changed
by journeying back to the 1970s. In a remarkable
and unjustly neglected paper, Ron Horvath argued
that much of the interior of Western cities had
become a new kind of machine wilderness, which
he called 'machine space'. He saw this new
territory, 'devoted primarily ... to the use of
machines' (Horvath 1974, 167), as a desolate and
threatening one, because it gave priority to
machines over people. Horvath was writing chiefly
of the automobile and he mapped out in detail the
'expanding realm of machinekind' (Horvath 1974,
187) by paying attention to the increasing amount
of space being given over to cars in American cities

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 313

AUTOMOBILE TERRITORY IN THE DELTA
AREA OF EAST LANSING, MICHIGAN

0 100 200 300
Feet

:

K

Automobile movement
Automobile service
Automobile storage

GEOGR REV APR 1974

Figure 1 Machine space (Horvath 1974)

(see Figure 1) and the consequent deathly effects.
Yet now we see something of the same kind of
machinic expansion occurring on as great a scale
(Mackenzie 1996). But even though software has
infused into the very fabric of everyday life - just
like the automobile - it brings no such level of
questioning in its wake.

Indeed, the automobile is a good place to start
our audit, since automobiles are increasingly
stuffed full of software. Reporting on the explosion
of electronics within motor cars, the Economist
Intelligence Unit (EIU 2000) predict, for instance,
that within a very short space of time electronics
will constitute more than 30 per cent of an execu-
tive car's total value. Such vehicle electronics are
increasingly driven by smart software, developed
by individual companies and through partnerships
such as the Intelligent Vehicle Initiative (IVI) in the
United States. Work within the IVI program
includes the development of intelligent collision
avoidance systems; traffic, location and route
guidance; driver condition monitoring systems;
and obstacle and pedestrian detection systems. As
we write, Ford UK is currently marketing its

Mondeo model on the basis of its Intelligent
Protection System (IPS). A neural network of
sensors embedded within the Mondeo enable IPS
to assess the severity of any impact, instantane-
ously adjusting the car's safety systems to maxi-
mize their effectiveness. Similarly, the new Jaguar
X-type, based on the Mondeo platform, not only
has a new familiar computerized navigation sys-
tem, but also voice activation of some controls and
a new feature called Jaguar Net, which integrates
telephone and satellite location and automatically
transmits an emergency call if there is an accident
in which an airbag is deployed. The number of car
components with these kind of embedded systems
is such that an EIU report predicts that as early as
2001 passenger cars will appear on the market with
'vehicle intranets', connecting all the various
onboard computers.

These intelligent vehicle programs are paralleled
by a growing number of intelligent transporta-
tion initiatives. For instance, the US IVI pro-
gram is integrated within a wider Intelligent
Transportation System program. Drawing on
developments in Australia, Japan and Europe, ITS

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

314 Nigel Thrift and Shaun French

Table I Active Y2K websites

UK General UK Y2K site. Includes downloadable cop- http://www.y2kbug.org.uk/
ies of key Year 2000 reports

UK British Computer Society Y2K Information http://www.bcs.org.uk/millen.htm
UK The Computer Information Centre Year 2000 Sup- http: / /www.compinfo.co.uk/y2k.htm

port Centre
UK BBC Education Millennium Bug Website http://www.bbc.co.uk/education/cdb/bug/
UK BBC News 'Bugtown' Y2K Website http:/ /news.bbc.co.uk/hi/english/static/millennium_bug/bugtown/
USA National Y2K Clearinghouse (public, business and http://www.y2k.gov/

academic national resource)
USA US Commercial Site http://www.year2000.com/
USA CBC News Y2K Site. http://cbc.ca/news/indepth/y2k/

America (www.itsa.org), an amalgam of public and
private bodies, seeks to foster the wider develop-
ment, employment and integration of Intelligent
Transportation Systems creating a more efficient,
safer and more cost-effective transport network.
Areas targeted by ITS include the collection and
transmission of information on traffic conditions;
the reduction of accidents and congestion; and the
development of sophisticated navigation and route
guidance systems for drivers. More specific
examples of Intelligent Traffic Systems include the
development of intelligent software for traffic
lights. Employing fuzzy logic intelligent traffic
lights are, for instance, able to read and react to
changing traffic conditions, thus providing
enhanced performance vis-a-vis conventional
fixed-time controlled lights (Khiang Tam et al.
1996).

But it is easy to move beyond automobiles and
roads in the search for urban software. Elevators
are another integral part of the infrastructure of
cities that have become increasingly software rich.
From being held up as an exemplar of a 'stupid
machine' in the early 1980s, James Gleick points
out that elevators have now surpassed even the
motor car in terms of their software richness.
According to Gleick, smart elevators now pack
'more computing power than a high-end auto-
mobile, which is to say more computing power
than the Apollo spacecraft' (Gleick 1999, 24). By
adding microprocessors, again programmed with
fuzzy logic, smart elevators or 'elevators with
algorithms' have:

learned to skip floors when they are already full, to
avoid bunching up, and to recognise human behaviour
patterns. They can anticipate the hordes who will
gather on certain floors and start pounding the DOWN
[sic] button at 4.55 p.m. each Friday. (Gleick 1999,
24-5)

The infusion of software into the urban infrastruc-
ture has not only impacted upon older urban
technologies, it is also a vital part of newer tech-
nologies. Despite only being a relatively new ad-
dition to the fabric of cities, security surveillance or
CCTV systems are in the process of being revol-
utionized (Graham 1998). In October 1998, the
London borough of Newham became the first
place in the world to employ smart CCTV to
monitor public spaces (Kinnes 2000). Developed by
Visionics, the Faceit surveillance system uses cut-
ting edge facial recognition technology to scan for
criminals. Faceit is able to do this by 'mimicking
the brain, the software scans and measures dis-
tances between the major landmarks of the face,
reducing them to a heap of pixels' (Kinnes 2000,
14). Following Newham, a similar anti-crime smart
CCTV system, Satnet, has been introduced to the
West End, while Cromatica, designed to monitor
crowd flows, congestion and prevent suicides, has
been tested on the London Underground (New
Scientist 1999a 1999b 2000).

Is there any way of making a more general
assessment of software in the city? Conveniently,
the millennium bug (Y2K) has provided a close
approximation to such a general audit.3 A brief
examination of the UK Audit Commission's (1998)
report on Y2K immediately brings into sharp relief
the degree to which software and related embed-
ded systems have infused everyday urban life.
In addition to traffic lights and lifts, the Audit
Commission lists car park barriers, central heating
boilers, building security systems, burglar and
fire alarms, accounting software, vehicle fleet
maintenance systems, local authority revenue
systems, child protection registers, benefit systems,
emergency service communication systems and
medical equipment, as just some of the areas with
the potential to seriously disrupt everyday life as a

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 315

consequence of their reliance on embedded and
computerized systems. Other notable landmarks of
'Bugtown UK' (Figure 2) included the banking
industry, gas, water and electricity supply, food
retailing, the post office, the police force, the fire
brigade, hospitals and emergency services. In the
case of hospitals, the Audit Commission used
the following passage to warn of the extent of the
potential problem:

The year 2000 project manager at one NHS trust is
quoted as saying: 'The [potential] problem extends to
all areas of the hospital - lifts, diagnostic equipment,
X-ray machines, anaesthetics, breathing equipment and
monitors'. (Audit Commission 1998, 11)

The Year 2000 problem was a global problem, and
similar kinds of audits were carried out all over
the world. For example, Table II lists the com-
pliance issues identified by the City of Beverly in
Massachusetts.

In the event, of course, the disruption caused by
the 'millennium bug' was negligible and there
have since been questions raised as to how much of
a true threat Y2K ever posed. Nevertheless, if it
achieved nothing else, Y2K served to amply
illustrate the extent to which software has seeped
into everyday life.

If, up until now, much of this infusion of
software into everyday life has gone largely
unnoticed, newer technological developments will,
by virtue of their closeness to bodies, be much
more readily apparent (though not necessarily
visible). This is the world of 'local intelligence' in
which everyday spaces become saturated with
computational capacities, thereby transforming
more and more spaces into computationally active
environments able to communicate within and
with each other. This change is taking place as a
result of two main developments. The first of these
is the move to 'ubiquitous', 'everywhere' or
'pervasive' computing, computational systems
which are distributed through the environment in
a whole range of devices, 'a physical world invis-
ibly interwoven with sensors, actuators, displays
and computational elements, embedded seam-
lessly in the everyday objects of our lives and
connected through a continuous network' (Weiser
et al. 1999, 2-3).

This is the world of 'information appliances'
foreseen by Norman (1998) in which each of us
will, in a sense, put our own computing needs
together as and when necessary. 'Information

appliances should be thought of as systems, not
isolated devices' (Norman 1998, 253) so that
'instead of one massive device that occupies con-
siderable space on our desk top, we will have a
wide range of devices that are designed to fit the
tasks that we wish to do' (Norman 2000, 12). Today,
of course, we only have access to the first gener-
ation of appliances meant to inform everyday life,
devices which still too often bear the mark of
'computing', chiefly personal digital devices (like
the Palm Pilot), mobile phones, recordable CD
players, portable MP3 players, personal voice
recorders, interactive pagers, internet radios, and
so on, which have some computing capacity and
can often communicate with each other. But
increasingly, this kind of computing will likely
make its way out into many more kinds of devices
and become personally tailored (see Bergman
2000). This is a move away from an internet-
inspired idea of computing as concerned with the
provision of specific stand-alone high technology
devices that provide analyses and representations
of information to computing as distributed
through a whole series of devices used as and
when - and where - appropriate. 'Less fuss and
bother. Simpler, more convenient devices. Great
flexibility and versatility. New modes of inter-
action, of learning, of conducting business and
recreation' (Norman 1998, 261).

The second development is the move to position
the internet - the obsession of the 1990s - as but
one element of a computing revolution:

the use of the Internet [will be] so pervasive, so natural,
and so commonplace that the very notion of calling
something an 'internet appliance' will be completely
unnecessary. (Norman 1998, 269)

Rather we will exist in a broadband world in which
the internet will be a permanently available 'cloud'
of information able to be called up through a
number of appliances scattered through the
environment. These appliances will be something
more than portals for information. Rather, like
many other devices which will not have internet
connections, they will be 'practice-aware', respond-
ing to and aware of the context in which they are
used through an array of wireless and other
sensors, continuous locational information read
from Global Positioning System (GPS) references,
and the like. In turn, this means we are moving
away from machines that simply respond to
machines that interact because they are aware

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

ON

I IOF
g g . , . S 44-y:X M lKfiC:-;;:-:0-iCt;!00-00000000 : ---ff000---Si::-:----:: it:g00-fEDEE:-0..ff:.fffffiEC000;00:-------------------:

.....................
.' ,...

Figure 2 'Bugtown UK'- the BBC's Y2K information site
Source: http:/ /news.bbc.co.uk/hi/english/static/millennium_bug/bugtown/

Cr

0

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Table II Some of the building and equipment issues included in the city of Beverly's Y2K compliance audit of local government services 4

Buildings Building security and safety Environmental Communications Office equipment

Building access Security alarms Electronic heat control/thermostats Phone service Copy machines
Electronic locks Fire alarms Electronic air conditioning control Phone switch Fax machines
Card keys Fire suppression/sprinkler Heat plant Voice mail system Postage meter
Keypad locks Fire door controls Air conditioning plant Local carrier Electronic scales
Time locks Alarmed crash bars Fuel source Long distance carrier Computer terminals
Handicap lifts Environment alarms Energy management Cell phone Desktop computers
Elevators Carbon monoxide detectors Lighting management Cell phone service Laptop computers
Intercom systems Radon detectors Backup generators Pagers Printers
Entry buzzers Natural gas detectors Water/sump pumps Pager service Personal digital assistant
Parking garage gates Water alarms Water meters Radios - 2 way Specialized software
Automatic garage doors Storage tank alarms Solar panels Radios - mobile Scanners
Closed circuit entry cameras Emergency lights Radios - marine VCR

Emergency light batteries Radio service Camcorders
Battery chargers Tape recorders
Security rounds clocks Digital cameras
Security cameras
Security monitors
Videotaped surveillance
Recorded phone system

Source: City of Beverly Y2K Audit Committee Report (1998), Massachusetts, United States

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

318 Nigel Thrift and Shaun French

enough of the context in which they operate to be
able to do so. This means more than simply better
human-machine interfaces (though these will be a
part of this new interactivity (Johnson 1997)). And
it means more than simply the redesign of the
overall encounter with a machine, so that it
becomes a more satisfying experience (see Dryer
et al. 1999). Rather it means that a whole set of
appliances (which 'compute') will, through a
process of cultural absorption into practices, sink
down from the representational into the non-
representational world, so becoming a part of a
taken-for-granted set of passions and skills (Thrift
2000).

At present, this world of local intelligence is still
some way off. But not that far off. Two examples
will suffice to make the case: mobile phone tech-
nology and so-called 'wearables'. With the advent
of third generation (3G) technologies, the software
running mobile phones and mobile phone net-
works is becoming ever more sophisticated such
that, just like the car or the elevator, the mobile is
set to become 'smarter' (New Scientist 2000). Mobile
phones incorporating speech recognition tech-
nology to allow hands-free dialling and access to
functions are already in common use. In addition,
work is underway on installing 'Bluetooth' and
other wireless communication chips, in addition to
SIM cards, into 3G phones. Such chips will allow
communication with other Bluetooth devices
within the immediate vicinity (roughly a house-
shaped bubble) of the mobile phone user. This
would allow, as one simple instance, the retailers in
city centres and shopping malls to send a "'10 per
cent off" coupon to your mobile's screen as you
approach' (New Scientist 2000, 33). Following on
from this kind of approach, it is clear that messages
soon will be pinned in mid-air using GPS.

Messages [will not] actually be kept in the air; they're
stored on a web page. But that page's Web address is
linked to co-ordinates on the Earth's surface, rather
than the organisation. As you move about, a GPS
receiver in your mobile phone or PDA will check to see
what has been posted on the website for that particular
spot. If you're in luck a snippet of info left as a
recording by someone who passed there previously
will pop up on your screen or be whispered into your
earpiece. (New Scientist 2001, 16)

Already, prototype systems like Hewlett
Packard's COOLTOWN (http://cooltown.hp.com)
are attempting to produce spaces in which
universal open messaging is commonplace.

The way in which mobile telephony has already
become a part of everyday life, producing new
forms of social action - from the new kinds of
'hyper-coordination' promoted by text messaging
(and the new kinds of 'flocking' that is made
possible) to the invasion of public space by private
and work lives to new kinds of affective social
performance - shows, in turn, the way that even
very basic forms of local intelligence can have
substantive cultural effects. (See Townsend 2000;
Laurier and Philo 2001; Brown et al. 2002).

A second example of nascent local intelligence is
provided by wearable computing, which has
begun to develop strongly in the last five years as a
means of providing computing that is always
ready and available by virtue of being present in
items of clothing: 'it's always on, it's always acces-
sible and it's always part of you' (Billinghurst
n.d.). 'It therefore exists within the corporeal
envelope of the user' (Bass 1997, 23). Though
commercial wearables will at first consist of items
like Levis IGD+ (developed in partnership with
Phillips and featuring the Xenium speech recog-
nition phone), which are little more than bulky
multi-pocketed jackets able to contain various
pieces of electronic kit, the future might be very
different. Cyberjackets will probably be the first
step. Such cyberjackets will, for example, be able to
alert and guide a wearer to interesting shops.
'Shopping Jackets' are, however, only one of a
whole host of potential wearable applications
developed to transcend the conventional user/PC
paradigm. For example, the Belgian company
Starlab have unveiled layers of i-Wear with
memory, communication, interface, power, connec-
tivity and computational abilities (www.starlab.
org).

More recently, it has become possible to create
computationally active textiles, which are able to
weave circuit substances into cloth, so creating the
possibility of ever more corporeally sensitive inter-
faces (Post et al. 2000). By installing computing
systems into jackets, trousers, hats, shoes, glasses,
and the like, wearable pioneers like Mann have
sought to radically reconfigure the way in which
we use computers. Smart clothing transforms com-
putation into 'intelligent assistance', actively rather
than passively engaging with the user (MIT web-
site: www.wearcam.org/computing.html/).4 Thus,
wearables can not only assist in locating shops,
they can also act as more general navigation aids,
as mobile payment systems, provide security

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 319

access to buildings, assist engineers and mechanics
in the field, record conversations, meetings and
other events, act as mobile internet and phone
portals, augment vision and memory and a host of
other activities. And, as in the case of mobile
phones, a key requirement of future wearable sys-
tems will be the need to communicate, through the
employment of wireless protocols like Bluetooth,
with each other and with other systems embedded
in the fabric of everyday life.

The trend towards local intelligence will hardly
stop at mobile phones and wearables, as a glance
at any journal like Personal Technologies shows.
Computational ability is being embedded in house-
hold whitegoods, in furniture (including beds and
couches), even in carpets (Omojola et al. 2000;
Paradiso et al. 2000).

However, it is also important to note that some
of the most important imprints of local intelligence
will come from the increasing ability afforded by
Bluetooth and similar wireless protocols to pro-
duce a multitude of 'invisible' embedded systems,
communicating not with human users, but with
each other, so producing a genuine 'mechano-
sphere'.5 In certain contexts it may even be, as New
Scientist (2000, 33) predicts, that communication
between people will become subservient to
machine-to-machine communication. So, for
example, 'the number of phone calls between
people will be overtaken by machines talking to
machines on behalf of people' with the result that

[a]s soon as your washing machine is installed, it will
be on the air to your Bluetooth controller, asking if it
can contact its manufacturer over the Net. A year later
you'll trip over a repair engineer who's been e-mailed
by the washing machine because it has a worn bearing.
(New Scientist 2000, 33)

In concluding this section of the paper, it is
important to note that this kind of actual and
prospective audit should not give the air of a kind
of technological finality, for two reasons. First, the
new generation of intelligent devices are already
being socially and culturally inflected in quite
different ways in different cultures. A good current
example is the radically different pattern of use of
mobile telephony and PDAs in Europe and North
America. Quite unexpectedly, different practices
have already grown up on both sides of the
Atlantic in relation to the take-up and use of these
two technologies (see Brown et al. 2002). Then, sec-
ond, software itself hardly constitutes a smoothly

functioning and well-versed set of procedures. This
is a point worth expanding. To begin with, software
consists of many, often incompatible, languages,
which are constantly changing.

I learned to program a computer in 1971; my first
programming job came in 1978. Since then, I have
taught myself six higher level programming languages,
three assemblers, two data-retrieval languages, eight
job-processing languages, seventeen scripting lan-
guages, ten types of macros, two object definition
languages, sixty-eight programming library interfaces,
five varieties of networks and eight operating environ-
ments - fifteen, if you cross-multiply the different
combinations of operating systems and networks. I
don't think this makes me particularly unusual. Given
the rate of change in computing, anyone who's been
around for a while could probably make a list like this.
(Ullman 1997, 101)

Then, software is built up from many different
components, many of which are 'legacy systems'
that have existed for many years. In effect, many
different programmers still live in the code
(Downey 1998).

Software gets to age. Too much time is invested in it,
too much time will be needed to replace it. So unlike
the tossed-out hardware, software is tinkered with. It is
mended and fixed, patched and reused ... I once
worked on a mainframe computer system where the
fan-folded history of my COBOL program stood as
high as a person. My program was sixteen years old
when I inherited it. According to the library logs,
ninety-six programmers had worked on it before I had.
I spent a year wandering its subroutines and service
modules, but there were still mysterious places I did
not touch. There were bugs on this system no one had
been able to fix for ten years. There were sections where
adding a single line of code created odd and puzzling
outcomes programmers called 'side effects': bugs that
come not directly from the added code but from some
later, unknown perturbation further down in the
process. My program was near the end of its 'life cycle'.
It was close to death.

Yet this system could not be thrown away. By the time
a computer system becomes old, no one completely
understands it. A system made out of old junky tech-
nology becomes, paradoxically, precious....

The preciousness of an old system is axiomatic. The
longer the system has been running, the greater the
number of programmers who have worked on it,
the less any one person understands it. As years pass
and untold numbers of programmers and analysts
come and go, the system takes on a life of its own. It
runs. That is its claim to existence: it does useful work.

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

320 Nigel Thrift and Shaun French

However badly, however buggy, however obsolete - it
runs. And no one individual completely understands
how. (Ullman 1997,116-17)

In other words, programmers function against a
background of 'ignorant expertise'.

The corollary of constant change is ignorance. This is
not often talked about: we computer experts barely
know what we are doing. We're good at fussing and
figuring out. We function well in a sea of unknowns.
Our experience has only prepared us to deal with
confusion. A programmer who denies this is probably
lying, or else is densely unaware of himself. (Ullman
1997, 110)

No wonder that most software is only properly
tested out through a process of trial and error in
real applications (Mackenzie 1996).

Again, as numerous writers have pointed out
(e.g. Winograd 1996; Norman 1998), software is
rarely designed well, so that the capacities of most
programmes are underused:

One of the main reasons most computer software is so
abysmal is that it's not designed at all, but merely
engineered. Another reason is that implementers often
place more emphasis on a program's internal construc-
tion than on its external design, despite the fact that as
much as 75 per cent of the code in a modern program
deals with the interface to the user. (Winograd 1996, 5)

Then, software does not always do as it is bidden
by programmers or is used as it is meant to be by
users. It is inescapably a joint production, a feature
that is especially noticeable when the program is
applied.

Writing a software program ... is a way of addressing
a problem in an original manner. Each team of pro-
grammers redefines and resolves, although differently,
the problem it is faced with. The actualisation of the
program during use in a work environment, however,
ignores certain skills, reveals new kinds of functional-
ity, gives rise to conflicts, resolves problems, and in-
itiates a new dynamic of collaboration. The software
carries with it a virtuality of change that the group ...
actualises in a more or less inventive way. (Levy 1998,
25)

To conclude this section, one last point also needs
to be made. The simple fact of the matter is that
software, in the shape of embedded systems, is
now so widespread that we are no longer able to be
sure of its exact extent.6 As the Audit Commission
stressed in relation to the difficulties encountered
in identifying Y2K-affected equipment, 'the pres-
ence of the embedded system may not be obvious

even to a trained observer ... [and some] systems
may also be extremely difficult to locate or test'
(Audit Commission 1998, 11, emphasis added). Yet
the Commission estimated that even as far back as
1996, some 7 billion embedded systems were being
distributed worldwide.

Breathing new life into software
Any audit of software in cities can therefore by its
very nature only ever be partial and incomplete,
and ours is no different. Indeed this recognition,
more than anything else, illustrates just how exten-
sive the distribution of this form of 'machine space'
has become. But this may only be the beginning.
Continuing developments within computer science
suggest a much greater role for software than has
so far been apparent as the machinic writing of
software itself changes its form and capabilities.

Such change arises out of a general move away
from formal well-specified programs towards pro-
grams that stress the situatedness of action, the
importance of interaction and adaptation, and
emergent properties. Such notions have existed for
a long time now, spurred on by the ethnographic
study of human-computer interaction and by more
general developments in the social sciences and
humanities (e.g. Suchman 1987). But, of late, these
kinds of programs, using a diverse range of meth-
odologies - from fuzzy sets to neural networks to
generative algorithms to the data mining tech-
niques of bio-informatics and bio-computation -
have become much more prevalent (Bentley 2001).
Here we note just one of these developments, the
growth of the so-called 'soft computing' move-
ment. Soft computing encompasses a range of
methods that stress appropriate rather than precise
models (Figure 3).

Fuzzy computation is a set of techniques most
often associated with the work of Zadeh at the
University of California, Berkeley from the 1960s
on, on fuzzy sets, fuzzy logic and complex systems
theory. In general terms fuzzy computation was
born from a recognition that existing programming
methodologies, which relied upon precise and
detailed models, were inappropriate for dealing
with complex, uncertain and vague systems or
problems (Ruspini et al. 1998). Similarly, techniques
of evolutionary computing grew out of a recognition
of the limitations of precise modelling techniques
for many empirical problems.7 Drawing upon
natural theories of 'reproduction, mutation and

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 321

HARD SOFT
COMPUTING COMPUTING

Precise Approximate
Models Models

Classical Functional
Symbolic Logic Numerical and Approximate Approx. &

Reasoning Search Methods Reasoning Randomized
Figure 3 Hard and soft computing (BonissoneSearch
Figure 3 Hard and soft computing (Bonissone 1998)

the Darwinian principle of survival of the fittest',
evolutionary computing seeks to harness the
'power of natural selection to turn computers into
automatic optimisation and design tools' (http://
evonet.dcs.napier.ac.uk/evoweb/; Heitk6tter and
Beasley 1999).

The term soft computing is closely linked to both
that of fuzzy computation and evolutionary com-
putation.8 In attempting to define soft computing,
Zadeh states that 'the role model for soft comput-
ing is the human mind' (1994, 27, emphasis added).
Soft computing is distinguished by its tolerance of
'imprecision, uncertainty and partial truth' (Zadeh
1994, 27), in contrast with conventional hard com-
puting with its emphasis upon 'crisp classifi-
cations' and perfect information. As Bonissone
stresses:

... when we attempt to solve real-world problems, we
realise that they are typically ill-defined systems, diffi-
cult to model and with large-scale solution spaces ...
Therefore, we need hybrid approximate reasoning
systems capable of handling this kind of imperfect
information. (Bonissone 1998, D1.1:2)

Increasingly, many soft computing approaches
have begun to share a general characteristic: a turn
to biology and the natural sciences for inspiration.
In particular, theories of evolution have inspired a
host of alternative programming techniques, of
which one of the most influential has been the
genetic algorithm (GA). As with many other soft
computing methods, GAs have provided the build-
ing blocks for some of the most sophisticated

software applications, particularly artificial intelli-
gence systems. It is therefore worth very briefly
examining the rationale behind the genetic algo-
rithm, both in its own right and as an exemplar of
soft computing techniques.

The genetic algorithm was developed in the
1970s by Holland at the University of Michigan as
a mechanism for addressing complex problems
with very large 'solution spaces' (Sipper 2000;
Holland 1975).9 To tackle large solution space prob-
lems, Holland developed a 'model of machine
learning which derives its behaviour from a meta-
phor of some of the mechanisms of evolution'
(Heitkotter and Beasley 1999, 1). As with other
types of evolutionary computing, GAs work by
seeking to evolve solutions to a given problem. To
achieve this, the GA employs a specific mode of
genetic representation (see Table III). A population of

Table III Comparison of biological and GA
terminology (Goldberg 1989, 22)

Biological Genetic algorithm

Chromosome String
Gene Feature, character, or detector
Allele Feature value
Locus String position
Genotype Structure
Phenotype Parameter set, alternative solution,

a decoded structure
Epistasis Nonlinearity

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

322 Nigel Thrift and Shaun French

individuals or bit strings of data, analogous to
chromosomes in human DNA, is initially gener-
ated, each of which represents a possible solution.
This first generation of candidate solutions is then
evaluated in the context of its environment, its
fitness to the problem in hand. On the basis of this
fitness and the genetic operator10 employed, a new
generation of individuals is born (Goldberg 1989;
Belew and Vose 1997; Heitkotter and Beasley 1999;
Sipper 2000). By employing the principle of 'sur-
vival of the fittest' along with that of genetic
diversity, each new generation produced should
include solutions that are better than those of the
previous generation. Of critical importance in
understanding the power of the GA is that it
removes the necessity of having a predetermined
solution to a problem. Programmers simply have
to determine an appropriate fitness function and
genetic operator (Davis and Steenstrup 1990).

The genetic algorithm, along with the various
other soft computing techniques, has been particu-
larly important in the development of artificial
intelligence (Al) systems. Al incorporates a wide
variety of specific applications, from artificial life,
robotics and recognition technologies through to
data mining, expert systems and intelligent agents.
One of the distinguishing features of all these
various types of Al system is the fact that they
operate within the very same, large solution
spaces for which conventional hard computing
approaches have shown themselves to be so ill-
equipped. It is no surprise then that soft compu-
tational models have been mobilized to address
such complex and indeterminate problems. Indeed
much of the impetus behind the development of
soft computing and the like has come from the
desire to develop artificial life systems, biometrics
and other smart technologies. This is little surprise
since, beginning with the early days of cybernetics,
there has been constant interchange between
biology and computing as, for example, in the case
of neural nets (Helmreich 1998; Anderson and
Rosenfeld 1999; Hayles 1999; Oyama 2001).

Turning back to our audit, soft computation can
be found in a great number of the embedded
systems that populate cities. Intelligent traffic
lights, elevators, automobiles and washing
machines are programmed with fuzzy logic, as are
many ITS systems (www.its.org). Genetic algor-
ithms are helping to run medical diagnostic and
monitoring equipment, data mining technologies,
credit scoring and behavioural modelling systems,

traffic management systems and call centre
telephone routing technologies. More generally,
genetic algorithms are being utilized in Artificial
Life worlds such as Tierra, financial market
models, flexible production systems, telecommuni-
cation networks and even by the UK's Channel 4 to
assist in the scheduling of television advertise-
ments (Helmreich 1998; Evonet: www.evonet.dcs.
napier.ac.uk). Self-learning software is also being
mobilized within the field of biometrics and in
technologies of recognition (for example, in visual
recognition systems).

These techniques have enabled machines and
objects to begin to take on some of the characteris-
tics of corporeal intelligence. Smart software has
begun to breathe new kinds of life into a multitude
of everyday things. This is not to suggest that
software or, for that matter, computer systems have
ever been dead (see Ullman 1997, 117; Downey
1998), but that the 'romantic reaction' (Turkle 1991,
cited in Helmreich 1998, 140) to hard, rationalistic
computing has helped software begin to take on
many of the characteristics normally associated
with biological life.

This new form of machine is no more starkly
illustrated than in the case of a range of technolo-
gies designed to recognize and act upon the human
body: the face, the voice, handwriting and, perhaps
most remarkably, mood and emotion. The first and
second of these, facial and speech recognition form
part of a wider school of biometrics technologies,
designed to recognize individuals from their
distinguishing traits. Other biometrics tech-
nologies developed for a range of security uses
include electronic fingerprinting, iris coding, hand
geometry and palm print recognition. As we have
shown, facial recognition technologies are already
becoming a reality within cities, as are commercial
voice recognition packages such as those devel-
oped by the Belgian company Lernout & Hauspie
(L&H) and those incorporated within the Xenium
mobile phone. L&H are not only developing
speech recognition applications for use within call
centres, consumer and business electronic pack-
ages, toys and wearables, but have also developed
text recognition products.

Research institutes such as the MIT Media Lab
have also conducted considerable work within the
area of 'Affective Computing', computational
systems with the ability to sense, recognize,
understand and respond to human moods and
emotions. Picard (1997 2000) argues that to be truly

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 323

interactive computers must have the power to
recognize, feel and express emotion.

Not all computers need to 'pay attention' to emotions
or to have the capability to emulate emotion. Some
machines are useful as rigid tools, and it is fine to keep
them that way. However, there are situations in which
human-computer interaction could be improved by
having the computer adapted to the user, and in which
communication about when, where, how and how
important it is to adapt involves the use of emotional
information. (Picard 2000, 1)

Plutowski (2000) identifies three broad cate-
gories of research within the area of affective
or emotional computing (www.emotivate.com/
Book/): emotional expression programs that dis-
play and communicate simulated emotional affect:
emotional detection programs that recognize and
react to emotional expression in humans; and
emotional action tendencies, instilling computer
programs with emotional processes in order to
make them more efficient and effective. Thus,
specific projects at MIT (www.media.mit.edu/
affect/) have included the development of
Affective Wearables such as Affective Jewellery,
Expression Glasses, and a Conductor's Jacket
designed to extend a Conductor's ability to express
emotion and intentionality to the audience and to
the orchestra. Other projects include: Affective
Carpets; Affective Virtual Reality Avatars, which
represent the changing emotional state of their
users in the real world; Affective Toys, such as the
'Affective Tigger' and Orpheus; and an Affective
CD player, which selects music in alignment with
current mood.

Affective computing is already making its way
into the commercial world. Basic emotional
expression and detection technology is being
employed through the use of 'embodied conver-
sational agents' (see Cassell et al. 2000; Pesce
2000), icons which are able to mimic conversation,
not only through better linguistic skills, but also
through employing a range of the non-verbal
behaviours associated with affect like facial
expression, gesture and posture. Such agents
therefore operate not only in the representational
register (as in, for example, representing con-
cepts), but also in the non-representational regis-
ter (as in spatializing or providing rhythm to
a conversation). Such icons now encompass a
whole range of agencies, including not only roles
in games, but also intelligent avatars like virtual

pets and virtual friends, and the intent to go one
better is also clear:

Just like real creatures, some agency will act as pets and
others will be more like free agents. Some agents will
belong to a user, will be maintained by a user, and will
live mostly in that user's computer. Others will be free
agents that don't really belong to anyone. And just like
real creatures, the agents will be born, die and repro-
duce ... I'm convinced that we need (these agents)
because the digital world is too overwhelming for
people to deal with, no matter how good the interfaces
we design ... Basically, we're trying to change the
nature of human computer interaction ... users will
not only be manipulating things personally, but will
also manage some agents that work on their behalf.
(Maes 1995, cited in Suchman 2001, 9)

So genetic algorithms beget something that is
meant to approximate life. Whether, as Suchman
(2001) convincingly argues, these icons are often
based on faulty attributions of interactive agency
to machines, the fact remains that these faulty
attributions are now constitutive. By enabling and
amplifying non-verbal communication between
humans, between humans and machines and ulti-
mately between machines and machines, these
icons seek to greatly enhance the usefulness of
embedded systems.

Software writing space

Wherever we go, then, in modern urbanized
spaces, we are directed by software: driving in the
car, stopping at the red light, crossing the road,
getting into an elevator, using the washing
machine or the dishwasher or the microwave,
making a phone call, writing a letter, playing a CD
or a computer game, the list goes on and on. Given
that we have established the prevalence of
mechanical writing in the spaces of everyday life,
we now need to begin to establish exactly how that
effectivity comes about. In this part of the paper we
will argue that this effectivity stems from three
different but intersecting geographies. The first of
these geographies is the most obvious, the large
and complex geography of the writing of software
- of the production of lines of code - a geography
that takes in many different locations and many
different languages and which has been built up
progressively since the invention of programming
in the 1940s. And this geography of writing can
only grow, especially given the demands of a
modern economy that is built on software (see

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

324 Nigel Thrift and Shaun French

Chandler and Cortada 2000) and the consequent
need to produce more and more lines of code -
whether we are talking of the 3000 or so lines of
code that an electric toothbrush may now use, or
the millions of lines of code that inhabit a personal
computer (Lohr 2001). 'Business cycles and Wall
Street enthusiasms will come and go, but someone
will have to build all the needed software.
Programmers are the artisans, craftsmen, brick
layers, and architects of the Information Age' (Lohr
2001, 7).

Software programming is still itself little under-
stood. As we have seen already, it is a curious
blend of science, engineering and artistry. On the
whole, studies of the programming labour process
(e.g. Downey 1998; Orr 1996; Perlow 1997; O'Riain
2000), do not capture its exact blend of writing
skills and are unable to explain why some people
are quite clearly better at programming than
others. As Knuth (1997) has observed:

There are a certain percentage of undergraduates -
perhaps two per cent or so - who have the mental
abilities that make them good at computer program-
ming. They are good at it, and its just flows out of
them.... The two per cent are the only ones who are
really going to make these machines do amazing
things. I wish it weren't so, but that is the way it has
always been. (cited in Lohr 2001, 9)

Whether new developments like grid program-
ming can overcome the reliance on those few who
can manipulate the few basic higher-level lan-
guages (like C and its variants), or whether large
amounts of programming will end up being auto-
mated - software produced by software - remains
to be seen. Certainly, writing code is

a curious blend of science, engineering, artistry - and
error: even experienced programmers make on average
one error for every ten lines of code (and all it takes is
three or four defects per 1000 lines of code for software
to start doing unpredictable things). (The Economist
2002)

Though software programming has a long history
spun out of many locations, its geography has now
stabilized. To begin with, there are, of course, all
these institutions that teach programmers to write
code: universities, schools and colleges, computer
institutes, and so on. But the geography of pro-
gramming is most often linked to centres of
software production. This geography can be
apprehended in two ways. One is the large and

complicated geography of those humans who write
software.

The globalisation of the information technology indus-
try is seen to result not in a virtual economy but in a
global industry organized around and through certain
key plans and regions. Within these global workspaces,
relations among workers constantly cycle through
phases of cohesion and fragmentation, as worker soli-
darity is mobilised for principles of innovation but
disowned by the structure of careers in the labour
market. (O'Riain 2000, 179)

The geography of software production is concen-
trated into a very few key places and regions:
Silicon Valley (Kenney 2000), New York (Pratt
2000), London, and a number of subsidiary and
sometimes mass production software locations
(often concentrating on tasks like consulting, test-
ing and support) in countries like Ireland and India
(O'Riain 2000). However, because writing software
requires skills that are still in short supply,
especially for newer languages, software writers
from all over the world often gravitate to the main
software-writing centres (Kenney 2000).

The other is a much wider network of produc-
tion that takes in many consumers as well. Since
the founding of the free software movement in
1983 by Richard Stallman, Open Source software
has become a massive collective project (McKelvey
2000). This has been particularly the case since the
founding of Internet Languages like Linux and
Perl, essentially software that has been commu-
nally enhanced by thousands of software writers
worldwide (Moody 2000). The much trumpeted
Linux - with its familiar Penguin logo - was
born from three sources: a team of professional
corporate developers attempting to solve their
organization's needs, commercial software com-
panies and individual programmers. More interest-
ing in many ways is Perl (Practical Evaluation and
Report Language). Created in 1987 in Santa Monica
by Larry Wall, Perl is now known as the 'duct tape
of the internet'. Made visible by the familiar logo of
the camel, signifying an entity often thought to
have been made by a committee - but which still
works - Perl is a kind of mechanical writing
culture with something like a million users (Moody
2000). Perl does not operate according to the strict
logics necessary to write earlier generation pro-
gramming languages. Rather, Wall, a linguistics
expert, created it to mimic 'expressive' written
languages on the principle of 'there's more than
one way to do it'. Perl is, in other words, a

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 325

language that allows a large amount of creative
expression, on the principle that 'easy things
should be easy and hard things should be possible'
(Wall et al. 2000, 4). Thus Perl is not a minimalistic
computer language, but has the capacity to be
fuzzy and to migrate. However,

Wall's achievement goes much further than simply a
great language. Perl was one of the key enabling
technologies that made possible the last wave of inter-
active web sites, and hence e-commerce itself. It
established yet another field - that of programming
languages - where the net-based open-development
process had produced better results than those tra-
ditionally employed within software companies to
create their black box products. (Moody 2000, 134)

And, at least in part, this was because of the
openness of the development process:

if you have a problem that the Perl community can't fix,
you have the ultimate backstop: the source code itself.
The Perl community is not in the business of renting
you their trade secrets in the guise of upgrades. (Wall
et al. 2000, xvii)

Whatever the language, it is clear that open soft-
ware is being written in many locations at once
but, even here, there is a very definite hierarchy of
places and people.11

The second geography is one of power. Power is
built into software from its inception. For example,
binary code is premised on the Leibnizian concep-
tion of permitted/not permitted. But, that said,
software has no fixed foundations beyond the
logical and material technologies of micro-
informational processing, so we must find a body
of work that can play to this characteristic. This we
do through the Foucauldian notion of govern-
mentality. Foucault's chief concern was with an
analysis of government that took as its central
concern how we govern and are governed within
specific regimes, and the conditions under which
such regimes are able to emerge, continue to
persist, and are transformed. According to Dean,
an analytics of government therefore works
through four dimensions of problematization:

1 Characteristic forms of visibility, ways of seeing and
perceiving
2 Distinctive ways of thinking and questioning, relying
on definite vocabularies and procedures for the
production of thoughts (e.g. those derived from the
social, human and behavioural sciences)
3 Specific ways of acting, intervening and directing,
made up of particular types of practical rationality

('expertise' and 'know-how'), and relying upon definite
mechanisms, techniques and technologies
4 Characteristic ways of forming subjects, selves,
persons, actors or agents. (Dean 1999, 23)

We can see straight away that software intervenes
in each of these dimensions. It has changed char-
acteristic forms of visibility by informationalizing
space, so producing new objects of analysis. It has
changed ways of thinking and questioning by
producing new analytic procedures. It has changed
the nature of expertise by producing new tem-
plates for decisionmaking and it is changing the
nature of human subjects by producing enhanced
capabilities and by questioning not just what tech-
niques of the self consist of, but whether the self is
a meaningful governmental category.

Software, is now, therefore, a key technology of
government for both the state and commerce. But it
is more than just a potent juridical intermediary.
Increasingly, software is becoming the practice of
government. What were corporeal routines that
could be questioned have seemingly become incor-
poreal routines that lie below the level of explicit
discourse, that are no longer disclosed.

Seen in this way, what then does software consist
of, outside the physical fact of lines of code? In
essence, we can say that it consists of rules of
conduct able to be applied to determinate situ-
ations. But these rules of conduct operate at a
distance, so that too often the code seems to have
little to do with the situations in which it is
applied.

Instead of seeing the program as a real instrument
affecting the lives of real people, programmers some-
times see it as a game, a challenge to their ingenuity.
The alienating quality of the computer permits us to
overlook the human consequences of a programming
design or error. An assignment to link scattered data-
bases in different quarters, for example, becomes noth-
ing more than a problem to be solved; the programmer
does not notice the resulting diminution of privacy and
the increased opportunities for mischief that can result.
(Kohanski 1998, 22)

Again, programmers themselves argue about
exactly what it is that they are producing and
who makes the decisions about the decisions incor-
porated into the code (Ullman 1997; Kohanski
1998). The remarkably few ethnographies of the
labour process in the software industry (e.g. Orr
1996; Perlow 1997; Downey 1998; O'Riain 2000)
hardly mention the issue, even though it is surely
crucial.

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

326 Nigel Thrift and Shaun French

What we can say is that code is law of a kind. But
it is not so much law considered as a set of rules as
law considered as a set of possible stories framing
encounters (Lessig 1999), new adaptive standards of
conduct. Taken together, these stories write out
standards of conduct that can work in all kinds of
situations at all kinds of scales. These stories can be
simple blocks. They can be encryptions. They can
be overall architectures. So, code has different
effects on conduct from the given of the green,
amber, red of traffic lights to the fact that only 23
people can be present in an AOL chat-room at once
(originally a choice of code engineers), to the
amount of information able to be collected on each
person and translated to commercial advantage.
Within certain highly coded domains, this infor-
mation can be wielded in almost absolute terms:

AOL space [is] different from other places in cyber-
space - it is easier for AOL to identify who you are, and
harder for individuals to find out who you are; easier
for AOL to speak to all its 'citizens' as it wishes, and
harder for dissidents to organise against AOL's views
about how things ought to be; easier for AOL to
market, and harder for individuals to hide. AOL is a
different narrative world; it can create other different
worlds because it is in, control of the architecture of that
world. Members in that space face, in a sense, different
sets of laws of nature; AOL makes those laws. (Lessig
1999, 70)

In a sense, what software is able to achieve is a
standardization and classification of urban situ-
ations in ways that were formerly impossible. It
forms a new chapter in what Bowker and Star
(1999, 31) call the 'categorical saturation' of the
modern world:

Although it is possible to pull out a single classification
scheme or standard for reference purposes, in reality
none of them stand alone. So a subproperty of ubiquity
is interdependence, and frequently, integration. A sys-
tems approach might see the proliferation of both
standards and classifications as purely a matter of
integration - almost like a giant web of interoperability.
Yet the sheer density of these phenomena go beyond
questions of interoperability. They are layered, tangled,
textured, they interact to form an ecology as well as a
flat set of compatibilities. That is to say, they facilitate
the collection of heterogeneous 'dispositif techniques'
(Foucault 1975). They are lodged in different commu-
nities of practice such as laboratories, records, offices,
insurance companies) and so forth. There are spaces
between (unclassified, non-standard areas), of course,
and these are especially important to the analysis. It
seems that increasingly these spaces are marked as

unclassified and non-standard. (Bowker and Star 1999,
31)

Seen in this way, the governmentality of software is
perhaps best approximated to by Deleuze's (1990)
notion of 'societies of control' in that it provides a
set of modulations that constantly direct how citi-
zens act (and who, therefore, is important). Those
modulations are often simply opportune. For
example, many of the most malign effects of code
have arisen when systems are linked in ways that
provide new opportunities for surveillance, for
example by providing previously unavailable
kinds of information. 'As a product manager once
told me, "I've never seen anyone with two sys-
tems who didn't want us to hook them together"'
(Ullman 1997, 85). But increasingly the modulation
will be purposeful. As software becomes increas-
ingly context-aware, so it will be able to adjust
rules to circumstances, providing a new kind of
mechanical stance to judgement that may well
begin to redefine what counts as law.

Numerous examples of new software classifi-
cation and standardization entities exist. We will
fix on one particularly potent one - the humble
spreadsheet. Low-cost spreadsheet programs first
appeared in 1979 with the introduction of VisiCalc
(for Visible Calculator) for the Apple II computer,
developed by Daniel Bricklin, Robert Frankston
and Dan Fylstra (see Lohr 2001). Within five years,
over one million spreadsheets were being sold
annually worldwide. Spreadsheets became ever
more ubiquitous as a result of additional design
work and the ability to be used on a PC (leading to
the successor program Lotus 1-2-3 for the IBM PC,
and to Microsoft Excel) - as well as more recently
to a Linux spreadsheet program. Certainly, within
ten years it could already legitimately be claimed
that many businesses had become 'spreadsheet
cultures'. Subsequently, spreadsheets have
continued to evolve with the addition of a
WYSIWYG (What You See Is What You Get)
interface (with many word processing facilities),
as well as sophisticated graphical display
capabilities.

The spreadsheet was able to be adapted so
rapidly for two reasons. First, because it functioned
as a high level programming language that could
easily be made task-specific through just a few
functions. As Nardi (1995) points out, the spread-
sheet was accessible (even in its early completely
text-based programming formats) because it used

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 327

very simple control constraints, which meant that
results could be achieved almost immediately with
relatively little effort on behalf of the user. The
sacrifice of the flexibility and generality character-
istic of most programming languages paid divi-
dends in producing much greater expressivity.
Second, the spreadsheet format mimicked the
structure of the paper ledger sheet, so that it was
already familiar and able to be inserted into the
everyday life of business. Yet,

The spreadsheet is fundamentally different from earlier
programs for financial calculation, with their unbridge-
able separation between programs and data - respond-
ing to a nearly unbridgeable separation between pro-
gramme and accountant. The key innovation was not in
the interface elements or the software structure but
rather in the virtuality provided to the user - the
underlying world of objects and their behaviour. The
spreadsheet virtually combines the regular structure of
the familiar ledger sheet with an underlying structure
of interlinked formulas. The non-technical user can
build a complex financial model incrementally, and can
explore the model through successive iterations of
inputs. This quantitative change in ease meant a quali-
tative change in how people worked with data.
(Winograd 1996, 230)

Thus managerial behaviour was profoundly
changed by the generation of new kinds of infor-
mation and interaction, new 'everyday business
lives':

The artfully crafted spreadsheet - here is how we can
cut costs! Here's how we should restructure this deal! -
could and did prove as politically explosive a docu-
ment as the declaration of independence or the com-
munist manifesto. Spreadsheet software breathed new
life into the old adage 'figures don't lie, but liars figure'.
As budgets and forecasts were used to find previously
unimagined opportunities, traditional perceptions of
power, politics, productivity, and profit all dramatically
shifted. Finance-driven organisations often found
themselves reorganising around their spreadsheets.
(Schrage 2000, 39)

The spreadsheet therefore had impacts in a number
of ways. To begin with, it provided new oppor-
tunity for interaction. Then, it furnished managers
with rhetorical energy (there is a rhetoric of spread-
sheets that results in more or less persuasive fore-
casts: 'spreadsheet rhetoric is about turning what
appears to be a dispassionate logic of numbers into
presentations that mute opposition even as they
enlist allies' (Schrage 2000, 47). Again, the spread-
sheet asked new questions, tested new ideas and

provided new business opportunities (such as new
financial products). They were 'a medium for seri-
ous play as much as for crunching hard numbers'
(Schrage 2000, 44). And, best of all, they provided a
new language. Thus Schrage exaggerates only
slightly when he writes that:

The multinational, multibillion dollar institutional
leader Asea Brown Boveri, nominally headquartered in
Europe, insists that English is its primary language, but
in practice the dominant language of ABB is spread-
sheet. Indeed, several senior managers observe that it is
communication, disagreement and negotiation over
spreadsheet forecasts and projects that drive business
at ABB. 'Yes, I think it is better to be more fluent in your
spreadsheet forecasts than in English', says a senior
ABB executive. 'Our numbers are probably more
important to us than our words'. (Schrage 2000, 46-7)

In other words, spreadsheets created new stories of
government, not least by producing new intel-
lectual stimulation. The artefact of spreadsheet
program created new coalitions, new forces, new
realities. In turn, their persuasiveness as a model
allowed them to migrate outwards from business
and finance into the city as a whole. They had
found a 'design foothold'. So, for example, special-
ist spreadsheet programs are now available for
applications as diverse as car purchase, class notes
and assignments, diving decompression, seed cul-
tivation and trading, landfill gas production,
archaeological digs, laboratory management,
chemical properties, music production and real
estate management.

Now that the spreadsheet is widely available, it has
come to be used for many tasks that have nothing to do
with figures. A spreadsheet can be used for anything
that calls for calculating regular arrays of values that
are interconnected by regular formulas - especially for
those actualities that call for exploring alternatives.
Professors use spreadsheets for grading courses,
scientists use spreadsheets for interpreting data from
experiments, and builders use spreadsheets for keeping
track of materials. New kinds of spreadsheets have
been developed that fill the cells with visual images,
sounds, and other data representations, interleaved by
formulas that perform calculations in the appropriate
domain. (Winograd 1996, 231)

But Foucault's notion of governmentality has a
negative side. Though it stresses the positive role of
power, it overwhelmingly concentrates on the
realm of constraint, whether legislated or self-
imposed. But there is a third kind of geography of
software, what Hobart and Schiffman (1998) call

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

328 Nigel Thrift and Shaun French

'the realm of play'. The general profusion of soft-
ware, its increasing complexity and consequent
emergent properties, all count as means of produc-
ing playful idioms that have not been captured by
dominant orders. Software's very indeterminacy
and lack of closure provide a means of creating
new kinds of order.

Play is 'freedom', wrote Huizinga, yet it also 'creates
order, is order'. In its creative activity, play does not
imitate or reflect or correspond or map directly to an
outside world, although the resulting order it produces
might eventually do so. Play's own order is not
derivatively mimetic but sui generis, methectic, as the
Greeks would say in reference to the theatre, a 'helping-
out-of-the-action'. By now it should be abundantly
clear that information in the contemporary idiom
means process, always in motion, always abetting the
action of life's drama. Less clear, perhaps, this motion
has direction, not towards any telos, purpose, or end,
but following with its rules the arrow of time. From the
time-bound movement of information play there can
emerge novel, unforeseen structures, 'order for free'.
(Hobart and Schiffman 1998, 259)

The creative phrasing of play can be put another
way, as a tending of the virtual. Software has
creative potential that is more than just possibility.
As Levy puts it,

The possible is already fully constituted but exists in a
state of limbo. It can be realised without any change
occurring either in its determination or nature. It is a
phantom reality, something latent. The possible is
exactly like the real, the only thing missing being
existence. The realisation of a possible is not an act of
creation in the fullest sense of the word, for creation
implies the innovative production of an idea or form.
The difference between the possible and the real is thus
purely logical.

The virtual should, properly speaking be compared not
to the real but the actual. Unlike the possible, which is
static and already constituted, the virtual is a kind of
problematic complex, the kind of tendencies or forces
that accompanies a situation, event, object, or entity,
and which involves a process of resolution: actualis-
ation. This problematic complex belongs to the entity in
question and even constitutes one of its primary
dimensions. The seed's problem, for example, is the
growth of the tree. The seed is this problem, even if it is
also something more than that. This does not signify
that the seed knows exactly what the shape of the tree
will be, which will one day burst into bloom and
spread its leaves above it. Based on its internal limita-
tions, the seed will have to invent the tree, co-produce
it together with the circumstances it encounters. (Levy
1998, 24)

Seen in this way, software does not have to be seen
as simply a form of constant and unbending recital.
It can be redefined as an experimental tool, such
that

rather than being defined principally through its actu-
ality (a solution), the entity now finds its essential
consistency within a problematic field. The virtualis-
ation of a given entity consists in determining the
general question to which it responds, in mutating the
entity in the direction of this question and redefin-
ing the initial actuality as the response to a specific
question. (Levy 1998, 26)

Given solution, then, proceeds to a different
problem. So software that may be designed to
produce defined and determined responses can in
certain circumstances - as the example of spread-
sheets shows - act as a spur to forms of creativity
that can transgress these standard forms of classi-
ficatory arrangement: there are new forms of Yes as
well as No (Lunenfeld 1999). Software is, then,
being used in remarkably creative and craft-laden
ways - from advances in animation that are
redefining kinetic events (Wells 1998), through
work on new forms of music using musical instru-
ment digital interfaces (MIDI), through work on
new forms of theatre and dance (Sparacino et al.
2000), through the pairing of artists and tech-
nologists (Harris 1999), through to the work of
technologically sophisticated artists like Char
Davies, who use software to create new virtual art
forms which recognize that 'whenever people
experience a piece of software - whether it be a
spreadsheet or a physics simulation [they can]
experience beauty, satisfaction and fun or the cor-
responding opposites' (Winograd 1996, xix). Such
aesthetic uses all depend on software programs,
from the early (mid-1980s) Macintosh programs
like MacPaint and MacDraw to complex contem-
porary multimedia programs like Director. Such
software can be said to proceed in a number of
different but related ways. To begin with, it can be
used to extend the range and meaning of the body,
not least by conjuring up various affective states
(McCullough 1996). It is interesting that so many
creative software projects have been concerned
with the body, both representing it in new ways,
and questioning its bounds as it is constantly
augmented (e.g. Allsopp and de Lahunta 1999).
Indeed, new software developments like haptic
computing promise to extend the range of infor-
mationalized embodiment still further, producing

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 329

interfaces between software and body which will
allow effects of unparalleled subtlety to be created.
As Tenhaaf notes:

the body seems ... to know itself in a minutely expres-
sive way that may by definition not be conscious, but
that may nevertheless become more available [as]
up-to-the-minute information and imagery about the
body's deepest workings and its most complicated
biosocial functions ... now enter and become inter-
woven into the biomedical readability of the self.
(Tenhaaf 1996, 67-8)

Then, software can be used to question familiar
Euro-American notions of representation. After all,
in certain senses

we are moving into an information environment in
which there is to be no representation at all. How we
represent ourselves and form subjectivity, in relation to
the real world, will no longer be an issue, as simulated
entry into parallel digital worlds comes to supercede
this relationship. (Tenhaaf 1996, 52; see also Brooks
1991)

Too strong, perhaps, yet it is not difficult to
see how many artists - and programmers - are
using software to question conventional notions
of representation in ways that are very close
to Strathern's recasting of Euro-American
perspectivism.

Suppose, instead of a Renaissance imagination which
at times tried to make the whole world the singular
object of the viewer's vision, having a perspective were
regarded as a capacity belonging to animate life. What
the writer could 'see' would be other life forms. What
would be finite here? Could it be the manner in which
one's perspective was returned to one? That is, closure
would lie in the fact that one simultaneously had one's
own perspective and received the perspective of
another. Or, rather, the point at which that viewer was
conscious that he or she had a perspective on things
would be the point at which he or she would meet (so
to speak) the reciprocal perspectives of other life forms.
(Strathern 1999, 249)

Again, software, precisely because it is an imper-
fect medium, can produce all kinds of opportuni-
ties for what Deleuze (1994) called 'bad mimesis'.
Many forms of software are procedures that con-
tain 'flaws' that can be used to produce new and
interesting potentialities: the culture of the not-
quite copy (Schwartz 1997). And, finally, it is worth
remembering how much software innovation has
itself found its momentum from a line of dissident
programmers (Moody 2000; Lohr 2001) in the tra-
dition of Thomas Nelson and Douglas Engelbart,

who not only stand in line as part-inventors of
hypertext, the World Wide Web, and so on, but
were clearly concerned with using software to
boost human capacities, and equally concerned
with redefining what was 'human'.

The rise of semi-artificial life

Our problem in thinking about the automatic pro-
duction of space by, with and from software is, by
now, we hope, clear. That is, that we are schooled
to ignore this kind of mechanical writing. It is a
part of the taken-for-granted background, to the
extent that some have suggested that it constitutes
a kind of virtual skin (or set of skins) around
human bodies (Bailey 1996; Levy 1998), one that
will become an ever better fit as wearable systems
become common.

So how can we summarize software's effectivity
as a new means of populating space, and as a new
means of reproducing intelligence? As we have
written this paper, so we have vacillated between
two answers, exactly as the literature does. One
answer is to see software as an epochal event.
Software signals a fundamental reorganization of
the environment, a vast system of distributed cog-
nition through which the environment increasingly
thinks for itself, an extra layer of thinking."2

Seen in this way, software is a part of the
extended organism of a new form of humanity, a
kind of extended phenotype in which the environ-
ment we have made speaks back to us: 'organisms
are integral with the world outside them' (Turner
2000, 6). If it is the case that modern biology of the
kind typified by developmental systems theory is
no longer sure what organisms are, so we can no
longer be sure what humanity consists of - where it
stops and something else begins. In this sense,
software is building using writing. Rather than
bricks and concrete, though, we have words and
strings of words. And, of course, increasingly
buildings may well become as much words as
bricks. Mitchell may exaggerate the possibilities
(see Bolter and Grusin 1999), but even so we can
see that some

buildings of the near future will function more and
more like large computers, with multiple processors,
distributed memory, various devices to control, and
network connections to take care of. They will suck in
information from their interiors and surroundings, and
they will construct and maintain complex, dynamic

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

330 Nigel Thrift and Shaun French

information overlays delivered through inanimate
devices worn or held by inhabitants, screens and spaces
in the walls and ceilings, and projections onto enclosing
surfaces. The software to manage all this will be a
crucial design concern. The operating system for your
house will become as essential as the roof, and certainly
far more important than the operating system for your
desktop PC.

Consequently a growing proportion of a building's
construction cost will go into high-value factory-made
electronics-loaded software - programmed computers
and subsystems, a correspondingly decreasing propor-
tion will go into on-site construction of the structure
and cladding. As they become denser with wiring
and electronic devices buildings will become more
like large-scale printed circuit boards than dumb
wallboard. (Mitchell 1999, 65)

What we see - and will see more of - in
Euro-American societies, therefore, is a complex
ecology of software, 'wideware' (Clark 2000),
which will increasingly inhabit every nook and
cranny of human life. Software as a kind of think-
ing grass. Latour and Hernant's (1997) Paris, made
up of a vast panorama of signs, directions and
objects will be paralleled in the virtual realm,
producing a more effective (because polycentric,
multi-vocal and heterogeneous) assemblage of con-
trol, whole species of normativity interacting in as
yet-to-be determined ways. But maybe this answer
is a bit too grand and we need to turn to another
answer instead, one that is less sweeping, more
mundane. After all, to begin with, there is plenty of
evidence that software does not always work that
well (for example, in the case of surveillance
cameras, see Lianos and Douglas 2000) and that
much of the writing that takes place in the world
will continue to be paper-based, not electronically
coded (Sellen and Harper 2002). Then, most soft-
ware is still initially written by human hands
(McCullough 1996). It arises from the striking of
keyboards, the clicking of the mouse, the shifting
of notes around on a desktop and the consulting of
manuals to find various standards and classifi-
cations (Bowker and Star 1999, 39). Software still
flows from the interface between body and object -
even though that interface may be what Knorr-
Cetina calls 'post-social', resting on the fact that

individuals in some areas relate to 'some' objects not
only as 'doers' and 'accomplishers' of things within an
agency framework but as experiencing, feeling, reflex-
ive and remembering beings - as bearers of the sort of

experiences we tend to reserve for the sphere of inter-
subjective relationships. (Knorr-Cetina 2001, 522)

And, finally, software is often written with what
can only be described as 'human' concerns in
mind. In particular, it is one of the key moments of
'virtualism' (Carrier and Miller 1998), the prolifer-
ation of theories about the world that prompt
efforts to make the world conform, rather than vice
versa. Examples of such virtual moments abound
in code, from the mobilization of biological analo-
gies discussed above, through various exchanges
with complexity theory (Thrift 1999), through
numerous philosophical theories - from Heidegger
(Winograd and Flores 1987) to Bakhtin (Sparacino
et al. 2000) - to the use of Kevin Lynch's (1966)
model of the city as a means to imagine the internal
coherence of software (Dieburger and Frank 1998).
And 'human' concerns echo through software in
other ways too. So the production of software is
increasingly bound up with and incorporates an
ethnographic mode of enquiry, whether that be
work on more social interfaces, on CSCW, or on the
psychology of artificial social actors (Dryer et al.
1999). In other words, an ethnographic model of
human encounters defines the horizon of certain
forms of software.

So, maybe instead of understanding software as
writing the next chapter in the evolution of human-
ity (Leroi-Gourhan 1993; Levy 1998), we can see it
as a more practical extension of human spaces,
consisting of three different processes. The first is a
simple extension of textuality. So, for example,
modern Western cities are effectively intertextual -
from the myriad forms issued by bureaucracies,
through the book, the newspaper and the web
page, through the checkout till roll and the credit
card slip to the letter, the e-mail and the text
message, the city is one vast intertext. Cities are
quite literally written and software is the latest
expression of this cursive passion. Second, soft-
ware is a part of the paraphernalia of everyday
urban life revealed by the turn to the noncognitive.
It is one of those little but large technologies that
are crucial to the bonding of urban time and space,
technologies like the pencil (Petroski 1992) and
the screw (Rybczynski 2000), which in their very
ubiquity go largely unnoticed. We can think of
software in this way - as a holding together
accomplished through the medium of performa-
tive writing. Third, we can see software as a
means of transport, as an intermediary passing

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 331

information from one place to another so efficiently
that the journey appears effortless, movement
without friction (Latour 1997). As a running
description of the present.

Whatever the answer (and our inclination is to
choose both at once), it seems certain that we can
no longer think of city spaces in the old, time-
honoured ways. Software challenges us to think
'beyond living', 'to mime an absent origin, "life"'
(Doyle 1997, 132). Software challenges us to
re-inscribe what we comprehend as inscription.
And, most importantly, software challenges us to
understand new forms of technological politics
and new practices of political invention, legibility
and intervention that we are only just beginning to
comprehend as political at all: politics of standards,
classifications, metrics, and readings (Barry 2001).
These orderings - written down as software - are
becoming one of the chief ways of animating space.
They should not be allowed to take us unaware.
One of the more pressing contemporary political
tasks must therefore be to design friendlier 'infor-
mation ecologies' (Nardi and O'Day 1999)13 that,
because of their diversity of outcome, will allow us
to shape overlapping spatial mosaics in which
effective participation is still possible and still
necessary. Automatic can be for the people.

Acknowledgements

We would like to thank audiences at the Royal
College of Art, the Conference on Information and
the Urban Future held at New York University, and
the Conferences on Hegemonies and Code held at
the University of Lancaster for their helpful com-
ments on this paper. In particular, we would like to
thank Fred Botting, Howard Caygill, Robert
Cooper, Mick Dillon, Paul Fletcher, Steve Graham,
John Hughes, Patrick Keiller, James Griesemer,
Kirsten McAllister, Paolo Palladino, Lucy
Suchman and Wes Sharrock for interventions that
have much improved the logic and content of this
paper. The assistance of the National University of
Singapore in providing the resources to allow the
paper to be finalized is gratefully acknowledged.

Notes

1 The first published use of the term 'software' as a
computing term dates only from 1958, when it was
used by John Tulley in the American Mathematical
Monthly (see Shapiro 2000; Lohr 2001). The Oxford

English Dictionary now defines software as the 'pro-
grams and procedures required to enable a computer
to perform a specific task, as opposed to the physical
components of the system'. In simple terms, the
function of such programs is to process data. Through
the employment of various mathematical algorithms,
programs process data to produce a requisite output,
thus enabling systems to operate. Again in simple
terms, software development involves the writing of
programs by software developers and computer
programmers drawing upon various languages and
programming techniques. The language and the pro-
gramming techniques employed will depend upon
the task in question.

2 This convergence begins with inventions like the
Jacquard Loom, and has a very definite history of its
own, which we have no space to document here. But
see Hobart and Schiffman (1998).

3 The following Y2K audit was conducted through
the internet; in particular, see the Websites listed in
Table I.

4 There are obvious dangers here of information over-
load, with consumers simply switching off, which
have led to a number of attempts by the advertising
industry to produce protocols that will allow selec-
tion. Taken from http: / /coverage.cnet.com/Content/
Gadgets/Special/FunToWear/ssO3html

5 Of course, it is possible to overstate the case mightily.
One of us was told of how MIT Media Lab brought
together a number of major kitchen manufacturers to
consider how kitchen devices could communicate
with each other, only to agree that there would not be
a lot for them to say.

6 The Audit Commission (1998, 5) defines embedded
systems as 'devices used to control, monitor or assist
the operation of equipment, machinery or plant ...
[a]ll embedded systems are, or include, computers'.

7 Evolutionary computing attempts to 'breed' progres-
sively better solutions to complex problems, in the
same way that successive generations of life forms
evolve to cope with particular environments.

8 Of the three terms, soft computing appears to be the
broadest, with Bonissone (1998) identifying elements
from evolutionary computing (genetic algorithms),
fuzz computation (fuzzy logic) as well as probabilistic
reasoning (including chaos theory and parts of learn-
ing theory (Zadeh 1994)) and neural networks within
this category.

9 By which is meant problems with too many possible
solutions to try them all within a reasonable period
of time (http://ai.about.com/compute/ai/library/
weekly/aallO800a.htm).

10 The genetic operator utilizes theories of evolution
such as gene crossover and gene mutation to alter the
composition of 'children' during reproduction.

11 Not too much should be made of the perception of
languages like Linux as being the project of offbeat

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

332 Nigel Thrift and Shaun French

code composers. Linux's core has mainly been devel-
oped by seven people - Linus Torvalds and David
Miller in California, David Cox in England, Ingo
Molnar in Hungary, Steven Tweedy, and Ted T'so on
the west coast of America and Andrea Arkangel in
Europe, who filter the patches of code they receive
and pass them on to 250 programmers worldwide,
the vast majority of whom work on testing (Young
1999).

12 We often turn, in this regard, to a lecture one of us
attended by John Seely Brown at UC Berkeley in May
2001 in which he outlined a project in which every
tree in a forest would have a chip inserted into it,
producing a natural system with memory and some
communication abilities (for example, being able to
call for help). An initial sceptical reaction was fol-
lowed by the thought that this may well indeed be
how spaces with software will come to be regarded,
as a second informationalized nature (Seely Brown
and Duguid 2000).

13 Nardi and O'Day, for example, point to the role of
'gardeners', mediators with computer skills above the
average who are found in many walks of life and
act as keystones in communities, and as the main
innovators in the co-evolution of tools and practices.
Similarly, we need new simpler kinds of 'block' pro-
gramming languages (rather like MIT Media Lab's
Logo), which are task-specific and accessible to all.

References

Aarseth E J 1997 Cybertext. Perspectives on ergodic literature
Johns Hopkins University Press, Baltimore

Agre P 1997 Computation and human experience Cambridge
University Press, Cambridge

Allsopp S and de Lahunta S 1999 'On line' Special issue
of Performance Research 4 20-42

Anderson J A and Rosenfeld E eds 1999 Talking nets. An
oral history of neural networks MIT Press, Cambridge,
MA

Appelbaum D 1995 The stop State University of New York
Press, Albany

Audit Commission 1998 A stitch in time: facing the
challenge of the year 2000 date change The Audit
Commission, London

Baber C, Haniff D J and Woolley S I 1999 Contrasting
paradigms for the development of wearable computers
IBM Systems Journal 38 18-23

Bailey C 1996 Virtual skin: articulating race in cyberspace
in Moser M A and McLeod D eds Immersed in technol-
ogy. Art in virtual environments MIT Press, Cambridge,
MA 29-50

Barry A 2001 Technological politics Athlone Press, London
Bass T 1997 The predictors Harper, New York
Belew R K and Vose M D 1997 Foundations of genetic

algorithms 4 Morgan Kaufmann, San Francisco

Bentley P 2001 Digital biology Headline, London
Bergman E ed 2000 Information appliances and beyond

Academic Press, San Diego
Billinghurst nd Quoted in 'Head to toe' CNET.com

(http: / / coverage.cnet.com / Content / Gadgets / Special!
FunToWear/ss03.html) Accessed 29 December 2000

Bolter J D and Grusin R 1999 Remediation. Understanding
new media MIT Press, Cambridge, MA

Bonissone P P 1998 Soft computing and hybrid systems
in Ruspini E, Bonissone P P and Pedrycz W eds The
handbook of fuzzy computation Institute of Physics
Publishing, London 161-78

Borgmann A 1999 Holding on to reality. The nature of
information at the turn of the millennium University of
Chicago Press, Chicago
2000 Semi-artificial life in Wrathall M and Malpas J
eds Heidegger, coping and cognitive science. Essays in
honor of Herbert L Dreyfus Volume 2 MIT Press,
Cambridge, MA 197-205

Bowker G C and Star S L 1999 Sorting things out.
Classification and its consequences MIT Press, Cambridge,
MA

Brooks F 1995 The mythical man-month Addison Wesley,
San Francisco

Brooks R A 1991 Intelligence without representation
Artificial Intelligence Journal 47 139-59

Brown B, Green N and Harper R eds 2002 Wireless world.
Social and interactional aspects of the mobile age Springer
Verlag, London

Brown P et al. 2000 Context awareness: some compelling
applications (www.cks.ex.ac.uk/-pjbrown/papers/
acm.html) Accessed 26 April 2001

Carrier J and Miller D eds 1998 Virtualism. A new political
economy Berg, Oxford

Cassell J, Sullivan J, Prevost S and Churchill E eds 2000
Embodied conversational agents MIT Press, Cambridge,
MA

Chandler A D and Cortada J W eds 2000 A nation
transformed by information Oxford University Press,
New York

Clark A 2001 Mindware. An introduction to the philosophy of
cognitive science Oxford University Press, Oxford

Clough P T 2000 Autoaffection. Unconscious thought in
the age of technology University of Minnesota Press,
Minneapolis

Collins H and Kusch M 1998 The shape of actions. What
machines can do MIT Press, Cambridge, MA

Crystal D 2001 Language and the internet Cambridge
University Press, Cambridge

Davis L and Steenstrup M 1990 Genetic algorithms and
simulated annealing: an overview in Davis L ed
Genetic algorithms and simulated annealing Pitman,
London 46-52

Dean M 1999 Governmentality. Power and rule in modern
society Sage, London

Deleuze G 1990 Postscript to societies of control October
31 27-36

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 333

1994 Difference and repetition Columbia University
Press, New York

Deleuze G and Parnet C 1987 Dialogues Athlone Press,
London

Derrida J 1998 Archive fever Chicago University Press,
Chicago

Dieburger A and Frank A U 1998 A city metaphor for
supporting navigation in complex information spaces
Journal of Visual Languages and Computing 9 597-622

Downey G C 1998 The machine in me. An anthropologist
sitting among computer engineers Routledge, New York

Downey J and McGuigan J eds 1999 Technocities Sage,
London

Doyle R M 1997 On beyond living. Rhetorical transfor-
mations of the life sciences Stanford University Press,
Stanford

Dreyfus H 2001 On the internet Routledge, New York
Dryer D C, Eisbach C and Ark W S 1999 At what

cost pervasive? A social computing view of mobile
computing systems IBM Systems Journal 38 61-5

Economist 2002 A lemon law for software The Economist
16 March Technology Quarterly, 3

Economist Intelligence Unit 2000 Electronic revolution in
the motor industry The Economist, London

Fischer S R 2001 A history of writing Reaktion, London
Foucault M 1975 The order of things Tavistock, London
Gleick J 1999 Faster. The acceleration of just about everything

Little Brown, London
Goldberg D E 1989 Genetic algorithms in search, optimiz-

ation and machine learning Addison-Wesley, London
Graham S 1998 Spaces of surveillant simulation: new

technologies, digital representations, and material
geographies Environment and Planning D Society and
Space 16 483-504

Hansen M 2000 Embodying technesis. Technology beyond
writing University of Michigan Press, Ann Arbor

Harris C ed 1999 Art and innovation. The xerox parc.
Artist-in-residence program MIT Press, Cambridge, MA

Hayles N K 1999 How we became posthuman MIT Press,
Cambridge, MA

Heitkotter J and Beasley D 1999 The hitch-hiker's guide
to evolutionary computation (http: / /www.cs.bham.
ac.uk/Mirrors/ftp.de.uu.net/EC/clife/www/top.htm)
Accessed 18 April 2001

Helmreich S 1998 Silicon second nature: culturing artificial
life in a digital world University of California Press,
Berkeley, CA

Hobart M E and Schiffman Z S 1998 Information ages.
Literacy, numeracy and the computer revolution Johns
Hopkins University Press, Baltimore

Holland J H 1975 Adaptation in natural and artificial systems
MIT Press, Cambridge, MA

Horvath R J 1974 Machine space The Geographical Review
LXIV 166-87

Johnson C 1993 System and writing in the philosophy
of Jacques Derrida Cambridge University Press,
Cambridge

1999 Ambient technologies, meaning signs Oxford
Literary Review 21 117-34

Johnson S 1997 Interface culture Basic Books, New York
Kay L 2000 Who wrote the book of life? A history of the genetic

code Stanford University Press, Stanford, CA
Kenney M ed 2000 Understanding Silicon Valley. The

anatomy of an entrepreneurial region Stanford University
Press, Stanford, CA

Khiang Tam K, Khalid M and Yusuf R 1996 Intelligent
traffic lights control by fuzzy logic Malaysian Journal of
Computer Science 9 66-71

Kinnes S 2000 In your face The Guardian 10 February
14-15

Kittler F A 1997 Literature, media information systems OPA,
Amsterdam

Knath D 1997 The art of computer programming (two
volumes) Addison-Wesley, San Francisco

Knorr-Cetina K 2001 Handbook of social theory Sage,
London

Kohanski D 1998 The philosophical programmer. Reflections
on the moth in the machine St Martins Press, New York

Latour B 1997 Trains of thought: Piaget, Formalism and
the Fifth Dimension Common Knowledge 6 170-91

Latour B and Hernant E 1997 Paris. Ville invisible Institut
Synthelabo, Paris

Laurel B 1993 Computers as theatre Addison Wesley,
Boston

Laurier E and Philo C 2001 'Accomplishing the company
region with a car, mobile phone, cardboard cut-out,
some carbon paper and a few boxes' Paper presented
at the Annual Meeting of the Association of American
Geographers, February-March 2001

Lechte J 1999 The who and what of writing in the
electronic age Oxford Literary Review 21 135-60

Leroi-Gourhan A 1993 Gesture and speech MIT Press,
Cambridge, MA

Lessig L 1999 Code and other laws of cyberspace Basic Books,
New York

Levy P 1998 Becoming virtual. Reality in the digital age
Plenum, New York

Lohr J 2001 Go to. Software superheros from Fortran to the
internet age Basic Books, New York

Lunenfeld P ed 1999 The digital dialectic. New essays on new
media MIT Press, Cambridge, MA

Lynch K 1966 The image of the city MIT Press, Cambridge,
MA

Mackenzie D 1996 Knowing machines. Essays on technical
change MIT Press, Cambridge, MA

McCarthy A 2001 Ambient television Duke University
Press, Durham, NC

McCullough M 1998 A digital craft. The practised digital
hand MIT Press, Cambridge, MA

McKelvey M 2000 The economic dynamics of software:
comparing Microsoft, Netscape and Linux Industrial
and Corporate Change 11 23-42

Mitchell W T J 1999 E-Topia MIT Press, Cambridge, MA
Moody G 2000 Rebel code Allen Lane, London

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

334 Nigel Thrift and Shaun French

Nardi B A 1995 A small matter of programming. Perspectives
on end user computing MIT Press, Cambridge, MA

- ed 1996 Context and consciousness. Activity theory and
human-computer interaction MIT Press, Cambridge, MA

Nardi B A and O'Day V L 1999 Information ecologies.
Using technology with heart MIT Press, Cambridge, MA

New Scientist 1999a Caught on camera 25 September
Reed Business Information, London

- 1999b Warning! Strange behaviour 11 December
Reed Business Information, London

- 2000 Emerging technologies: everything, anywhere
21 October Reed Business Information, London

- 2001 Write here, write now New Scientist 1 December
2001 16-17

Norman D A 1998 The invisible computer MIT Press,
Cambridge, MA

- 2000 Making technology visible: a conversation with
Don Norman in Bergman D ed Information appliances
and beyond. Interaction design for consumer products
Morgan Kaufman, San Francisco 9-26

Omojola I et al. 2000 An installation of interactive
furniture IBM Systems Journal 39 82-90

O'Riain S 2000 Net-working for a living: Irish software
developers in the global workplace in Burawoy M,
Blum J and Sheba G eds Global ethnography. Forces,
connections and imaginations in a postmodern world
University of California Press, Berkeley 175-202

Orr J E 1996 Talking about machines. An ethnography of a
modern job Cornell University Press, Ithaca

Oyama S 2001 The ontogeny of information 2nd edn
Princeton University Press, Princeton

Paradiso J A, Hsiao K, Benbasat A Y and Teegarden Z
2000 Design and implementation of expressive
footwear IBM Systems Journal 30 103-15

Perlow L A 1997 Finding time Cornell University Press,
Ithaca

Pesce M 2000 The playful world: how technology is transform-
ing our imagination Ballatine Books, New York

Petroski H 1992 The pencil Knopf, New York
Phelan P 1993 Unmarked Routledge, New York
Picard R W 1997 Affective computing MIT Press, London
-2000 Toward computers that recognise and respond to

use emotion IBM Systems Journal 39 16
Plutowski M 2000 Emotional computing (www.

emotivate.com/Book/intro.htm) Accessed 1 February
2001

Post E R, Orth M, Rosso P R and Gershenfeld N 2000
E-broidery: design and fabrication of textile-based
computing IBM Systems Journal 39 142-53

Poster M 2001 What's the matter with the internet?
University of Minnesota Press, Minneapolis

Pratt A 2000 New media, the new economy and new
spaces Geoforum 31 425-36

Ruspini E H, Bonissone P P and Pedrycz W 1998 eds
Handbook of fuzzy computation Institute of Physics
Publishing, Bristol

Rybczynski W 2000 One good turn. A natural history of the
screwdriver and the screw Simon and Schuster, New York

Schrage M 2000 Serious play Harvard Business School
Press, Boston

Schwartz H 1997 The culture of the copy Zone Books, New
York

Seely Brown J and Duguid P 2000 The social life of
information Harvard Business School Press, Boston

Sellen A J and Harper R H R 2002 The myth of the paperless
office MIT Press, Cambridge, MA

Shapiro F 2000 Origins of the term software: evidence
from the JSTOR electronic journal archive IEEE Annals
of the History of Computing 22 69-71

Sipper M 2000 A brief introduction to genetic algorithms
(http: / /lslwww.epfl.ch/ []moshes/ga_main.html)
Accessed 17 April 2001

Sparacino F, Davenport G and Pentland A 2000 Media
in performance: interactive spaces for dance, theatre,
circus and museum exhibits IBM Systems Journal 39
160-73

Spivak G C 1993 Outside in the teaching machine
Routledge, New York

Stiegler B 1998 Technics and time 1: The fault of Epimetheus
Stanford University Press, Stanford

Strathern M 1999 Property, substance and effect Athlone
Press, London

Suchman L 1987 Plans and situated actions. The problem of
human machine communications Cambridge University
Press, Cambridge

- 2001 Human/machine reconsidered Department of
Sociology, University of Lancaster (http: / /www.
comp.lancs.ac.uk/sociology/socO4Ol5.htm/) Accessed
26 January 2002

Tenhaaf N 1996 Mysteries of the bioapparatus in Moser
M A and McLeod D eds Immersed in technology. Art in
virtual environments MIT Press, Cambridge, MA 51-71

Thomas P J ed 1995 The social and interactional dimensions
of human-computer interfaces Cambridge University
Press, Cambridge

Thrift N J 1999 The place of complexity Theory, Culture
and Society 16 31-70

- 2000 Afterwords Environment and Planning D. Society
and Space 18 213-55

-2001 Elsewhere in Cummings N and Lewandowska M
eds Capital Tate Modem, London

Townsend A 2000 Life in the real-time city: mobile
telephones and urban metabolism Journal of Urban
Technology 7 85-104

Turkle S 1991 Romantic reactions: paradoxical responses
to the computer presence in Sheehan J J and Sosna M
eds Boundaries of humanity: humans, animals, machines
University of California Press, Berkeley 63-72

Turner J S 2000 The extended organism. The physiology
of animal-built structures Harvard University Press,
Cambridge, MA

Ullman E 1997 Close to the machine. Technophilia and its
discontents City Lights, San Francisco

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

The automatic production of space 335
Ulmer B and Ishii H 2000 Emerging broadcasts for

tangible user interfaces IBM Systems Journal 30 65-72
Ulmer G 1989 Teletheory Routledge, London
Vidler A 2000 Warped space MIT Press, Cambridge, MA
Wall L, Christiansen T, Orwant J 2000 Programming Perl

O'Reilly, Sebastopol, CA
Weiser M, Gold R and Brown J S 1999 The origins of

ubiquitous computing research at PARC in the late
1980s IBM Systems Journal 38 83-97

Wells P 1998 Understanding animation Routledge, London

Winograd T ed 1996 Bringing design to software Addison
Wesley, Reading, MA

Winograd T and Flores F 1987 Understanding computers
and cognition. A new foundation for design Addison
Wesley, Reading, MA

Young R 1999 Under the radar. How Red Hat changed the
software business Coriolis, Scottsdale, AZ

Zadeh L A 1994 What is BISC? (BISC website
http.cs.berkeley.edu/projects/Bisc/bisc.welcome.html)
Accessed 13 April 2001

This content downloaded from 132.234.251.230 on Sun, 9 Jun 2013 02:21:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. [309]
	p. 310
	p. 311
	p. 312
	p. 313
	p. 314
	p. 315
	p. 316
	p. 317
	p. 318
	p. 319
	p. 320
	p. 321
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328
	p. 329
	p. 330
	p. 331
	p. 332
	p. 333
	p. 334
	p. 335

	Issue Table of Contents
	Transactions of the Institute of British Geographers, New Series, Vol. 27, No. 3 (2002), pp. 259-384
	Front Matter
	Editorial: Time to Think [pp. 259-261]
	Changing Industrial Production Systems and Regional Development in the New Europe [pp. 262-281]
	The Production, Symbolization and Socialization of Gentrification: Impressions from Two Berkshire Villages [pp. 282-308]
	The Automatic Production of Space [pp. 309-335]
	Labour Electoral Landslides and the Changing Efficiency of Voting Distributions [pp. 336-361]
	Diversity and Change in Australia's Rangelands: A Post-Productivist Transition with a Difference? [pp. 362-384]
	Back Matter

